A Novel Turbo Detector Design for a High-Speed SSVEP-Based Brain Speller

Author:

Tong Changkai,Wang Huali,Cai JunORCID

Abstract

The past decade has witnessed the rapid development of brain-computer interfaces (BCIs). The contradiction between communication rates and tedious training processes has become one of the major barriers restricting the application of steady-state visual-evoked potential (SSVEP)-based BCIs. A turbo detector was proposed in this study to resolve this issue. The turbo detector uses the filter bank canonical correlation analysis (FBCCA) as the first-stage detector and then utilizes the soft information generated by the first-stage detector and the pool of identified data generated during use to complete the second-stage detection. This strategy allows for rapid performance improvements as the data pool size increases. A standard benchmark dataset was used to evaluate the performance of the proposed method. The results show that the turbo detector can achieve an average ITR of 130 bits/min, which is about 8% higher than FBCCA. As the size of the data pool increases, the ITR of the turbo detector could be further improved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3