A Novel Geo-Social-Aware Video Edge Delivery Strategy Based on Modeling of Social-Geographical Dynamic in an Urban Area

Author:

Jia ShijieORCID,Cui Yan,Zhang Ruiling

Abstract

Social networks change the way and approaches of video spread and promote range and speed of video spread, which results in frequent traffic blowout and a heavy load on the networks. The social and geographical communication efficiency determines the efficiency of video sharing, which enables the eruptible traffic to be offloaded in underlaying networks to relieve the load of networks and ensure the user quality of the experience. In this paper, we propose a novel geo-social-aware video edge delivery strategy based on the modeling of the social-geographical dynamic in urban area (GSVD). By investigating the frequency of sharing behaviors, social communication efficiency, and efficiency of social sub-network consisting of one-hop social neighbors of users, GSVD estimates the interactive and basic social relationship to calculate the closeness of the social relationship between mobile users. GSVD makes use of grid partition and coding subarea to express the geographical location of mobile users and designs a calculation method of coding-based geographical distance. GSVD considers the dynamic update of social distance and geographical location and designs a measurement of video delivery quality in terms of delivery delay and playback continuity. A strategy of video delivery with the consideration of adapting to social-geographical dynamic is designed, which effectively promotes the efficiency of video sharing. Extensive tests show how GSVD achieves much better performance results in comparison with other state of the art solutions.

Funder

Training Plan for Young Backbone Teachers of Colleges and Universities in Henan

Special project of key research and development Plan of Henan Province

Innovation Team of University Science and Technology of Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3