Robust Control Design of a Human Heart Rate System for Cardiac Rehabilitation Exercise

Author:

Abbasi Saad Jamshed,Kim Won Jae,Kim JaehyungORCID,Lee Min CheolORCID,Lee Byeong JuORCID,Shin Myung Jun

Abstract

Automatic, precise, and accurate heart rate control during treadmill exercise is an interesting topic among researchers. The human heart is a highly nonlinear system. Conventional control techniques are not sufficient and it is difficult to accurately model the human heart. Two different robust controllers were designed for this nonlinear system. Firstly, sliding mode control (SMC) was implemented; SMC is robust against parametric uncertainties and external disturbance but its robustness is not guaranteed during the reaching phase, especially in heart rate control, and implementation of SMC requires the linear parameters of the system (human heart rate model). In this research, the signal compression method (SCM) was used for approximately linearized modeling of the human heart rate. The extraction of the human heart rate model using SCM requires experiment and computation. Furthermore, it was observed in this research that SCM is not a precise method. Therefore, integral sliding mode control (ISMC) was designed and implemented to overcome these difficulties. By introducing an auxiliary sliding surface, the reaching phase and effect of the perturbation on an actual sliding surface were eliminated; furthermore, implementation of ISMC does not require the linear parameters of the system. Simulations were performed in MATLAB/Simulink and experiments were conducted in a hospital. Six clinical subjects participated in this experiment. Both forms of control logic were implemented during the desired heart rate tracking test. Results showed that the desired heart rate tracking of ISMC is better than that of SMC. The tracking error of ISMC is smaller than that of SMC. However, ISMC control output has chattering, which needs to be reduced.

Funder

Korea Institute for Advancement of Technology

Korea Institute of Evaluation and Planning and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3