Abstract
The complexity and difficulty of dynamic obstacle avoidance for AGVs are increased by the uncertainty in a dynamic environment. The adaptive speed obstacle method allows the size of the collision cone to be dynamically changed to solve this problem, but this method may cause the AGV to turn too much when it is close to obstacles, as the collision cone expands too fast, which may lead to unstable operations or even collision. In order to address these problems, we propose an improved speed obstacle algorithm. The proposed algorithm uses Kalman filtering to estimate the positions of dynamic obstacles and adopts the idea of forward simulation to build a speed obstacle buffer according to the estimated positions of obstacles, such that the AGV can use the predicted positions of obstacles in the next moment, instead of the current positions, to build a speed obstacle model. Finally, an objective function that balances efficiency and safety was established to score all the candidate speeds, such that the highest-rated speed could be selected as the candidate speed for the next moment.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献