Reduced-Cost Optimization-Based Miniaturization of Microwave Passives by Multi-Resolution EM Simulations for Internet of Things and Space-Limited Applications

Author:

Pietrenko-Dabrowska AnnaORCID,Koziel SlawomirORCID,Raef Ali GhaffarlouyORCID

Abstract

Stringent performance specifications along with constraints imposed on physical dimensions make the design of contemporary microwave components a truly onerous task. In recent years, the latter demand has been growing in importance with the innovative application of areas such as the Internet of Things coming into play. The need to employ full-wave electromagnetic (EM) simulations for response evaluation, reliable, yet CPU-heavy, only aggravates the issue. This paper proposes a reduced-cost miniaturization algorithm that employs a trust-region search procedure and multi-resolution EM simulations. In our approach, the resolution of the EM model is adjusted throughout the optimization process based on its convergence status starting from the lowest admissible fidelity. As the algorithm converges, the resolution is increased up to the high-fidelity one, used at the final phase to ensure reliability. Four microwave components have been utilized as verification structures: an impedance matching transformer and three branch-line couplers. Significant savings in terms of the number of EM analyses required to conclude the size reduction process of 41, 42, 38 and 50 percent have been obtained (in comparison to a single-fidelity procedure). The footprint area of the designs optimized using the proposed approach are equal to 32, 205, 410 and 132 mm2, in comparison to 52, 275, 525 and 213 mm2 of the initial (and already compact) design.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3