A Direct Single-Phase to Three-Phase AC/AC Power Converter

Author:

Biswas Shuvra ProkashORCID,Uddin Md. ShihabORCID,Islam Md. RabiulORCID,Mondal SudiptoORCID,Nath JoysreeORCID

Abstract

The traditional DC-link indirect AC/AC power converters (AC/DC/AC converters) employ two-stage power conversion, which increases the circuit complexity along with gate driving challenges, placing an excessive burden on the processor while implementing complex switching modulation techniques and leads to power conversion losses due to the use of a large amount of controlled power semiconductor switches. On the contrary, the traditional direct AC/AC voltage controllers, as well as frequency changers, suffer from high total harmonic distortion (THD) problems. In this paper, a new single-phase to three-phase AC/AC step-down power converter is proposed, which utilizes a multi-linking transformer and bilateral triode thyristors (TRIACs) as power semiconductor switches. The proposed direct AC/AC power converter employs single-stage power conversion, which mitigates the complexity of two-stage DC-link indirect AC/AC converters and traditional single-stage AC/AC frequency changers. Instead of using high-frequency pulse width modulated gate driving signals, line frequency gate pulses are used to trigger the TRIACs of the proposed AC/AC converter, which not only aids in reducing the power loss of the converter but also mitigates the cost and complexity of gate driver circuits. The proposed AC/AC converter reduces the THD of the output voltage significantly as compared to traditional direct AC/AC frequency changers. The performance of the proposed AC/AC converter is validated against RL and induction motor load in terms of overall THD and individual harmonic components through MATLAB/Simulink environment. A reduced-scale laboratory prototype is built and tested to evaluate the performance of the proposed AC/AC power converter. The experimental and simulation outcomes reveal the feasibility and excellent features of the proposed single-phase to three-phase AC/AC converter topology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3