An Improved Whale Optimizer with Multiple Strategies for Intelligent Prediction of Talent Stability

Author:

Li Hong,Ke Sicheng,Rao Xili,Li Caisi,Chen Danyan,Kuang Fangjun,Chen HuilingORCID,Liang GuoxiORCID,Liu LeiORCID

Abstract

Talent resources are a primary resource and an important driving force for economic and social development. At present, researchers have conducted studies on talent introduction, but there is a paucity of research work on the stability of talent introduction. This paper presents the first study on talent stability in higher education, aiming to design an intelligent prediction model for talent stability in higher education using a kernel extreme learning machine (KELM) and proposing a differential evolution crisscross whale optimization algorithm (DECCWOA) for optimizing the model parameters. By introducing the crossover operator, the exchange of information regarding individuals is facilitated and the problem of dimensional lag is improved. Differential evolution operation is performed in a certain period of time to perturb the population by using the differences in individuals to ensure the diversity of the population. Furthermore, 35 benchmark functions of 23 baseline functions and CEC2014 were selected for comparison experiments in order to demonstrate the optimization performance of the DECCWOA. It is shown that the DECCWOA can achieve high accuracy and fast convergence in solving both unimodal and multimodal functions. In addition, the DECCWOA is combined with KELM and feature selection (DECCWOA-KELM-FS) to achieve efficient talent stability intelligence prediction for universities or colleges in Wenzhou. The results show that the performance of the proposed model outperforms other comparative algorithms. This study proposes a DECCWOA optimizer and constructs an intelligent prediction of talent stability system. The designed system can be used as a reliable method of predicting talent mobility in higher education.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3