A Deep Learning Approach for Efficient Electromagnetic Analysis of On-Chip Inductor with Dummy Metal Fillings

Author:

Li Xiangliang,Tang Yijie,Zhao Peng,Chen Shichang,Xu KuiwenORCID,Wang GaofengORCID

Abstract

A deep learning approach for the efficient electromagnetic analysis of an on-chip inductor with dummy metal fillings (DMFs) is proposed. By comparing different activation functions and loss functions, a deep neural network for DMF modeling is built using a smooth maximum unit activation function and log-cosh loss function. The parasitic capacitive effect of DMFs is quickly and accurately extracted though this model, and the effective permittivity can be obtained subsequently. An on-chip inductor containing DMFs with different filling densities is analyzed using this proposed method and compared with the electromagnetic simulation of entire structures. The results validate the accuracy and efficiency of this proposed method.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Key Research & Development Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

1. Emerging Developments in CMP for Semiconductor Planarization;Fury;Solid State Technol.,1995

2. The Physical and Electrical Effects of Metal-Fill Patterning Practices for Oxide Chemical-Mechanical Polishing Processes;Stine;IEEE Trans. Electron Devices,1998

3. Lee, K.H., Park, J.K., Yoon, Y.N., Jung, D.H., Shin, J.P., Park, Y.K., and Kong, J.T. (2001, January 2–5). Analyzing the Effects of Floating Dummy-Fills: From Feature Scale Analysis to Full-Chip RC Extraction. Proceedings of the Technical Digest—International Electron Devices Meeting, Washington, DC, USA.

4. Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion;Kim;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2009

5. On-Chip Inductor above Dummy Metal Patterns;Hsu;Solid-State Electron.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3