A DEXiRE for Extracting Propositional Rules from Neural Networks via Binarization

Author:

Contreras VictorORCID,Marini NiccoloORCID,Fanda LoraORCID,Manzo GaetanoORCID,Mualla YazanORCID,Calbimonte Jean-PaulORCID,Schumacher MichaelORCID,Calvaresi DavideORCID

Abstract

Background: Despite the advancement in eXplainable Artificial Intelligence, the explanations provided by model-agnostic predictors still call for improvements (i.e., lack of accurate descriptions of predictors’ behaviors). Contribution: We present a tool for Deep Explanations and Rule Extraction (DEXiRE) to approximate rules for Deep Learning models with any number of hidden layers. Methodology: DEXiRE proposes the binarization of neural networks to induce Boolean functions in the hidden layers, generating as many intermediate rule sets. A rule set is inducted between the first hidden layer and the input layer. Finally, the complete rule set is obtained using inverse substitution on intermediate rule sets and first-layer rules. Statistical tests and satisfiability algorithms reduce the final rule set’s size and complexity (filtering redundant, inconsistent, and non-frequent rules). DEXiRE has been tested in binary and multiclass classifications with six datasets having different structures and models. Results: The performance is consistent (in terms of accuracy, fidelity, and rule length) with respect to the state-of-the-art rule extractors (i.e., ECLAIRE). Moreover, compared with ECLAIRE, DEXiRE has generated shorter rules (i.e., up to 74% fewer terms) and has shortened the execution time (improving up to 197% in the best-case scenario). Conclusions: DEXiRE can be applied for binary and multiclass classification of deep learning predictors with any number of hidden layers. Moreover, DEXiRE can identify the activation pattern per class and use it to reduce the search space for rule extractors (pruning irrelevant/redundant neurons)—shorter rules and execution times with respect to ECLAIRE.

Funder

CHISTERA

Swiss National Science Foundation

Italian Ministry for Universities and Research, the Luxembourg National Research Fund

Scientific and Research Council of Turkey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3