Study on Co-Estimation of SoC and SoH for Second-Use Lithium-Ion Power Batteries

Author:

Jiang Nan,Pang HuiORCID

Abstract

Lithium-ion batteries are an ideal power supplier for electric vehicles (EVs) due to their high-power density and wide operating voltage, but their performance decays to 80% before retirement from EVs. Nevertheless, they still have a particular use value after decommissioning, so recycling the retired power battery in cascade can be considered. Therefore, accurate estimation of battery state-of-charge (SoC) and state-of-health (SoH) is crucial for extending the service life and echelon utilization of power lithium-ion battery packs. This paper proposes a comprehensive co-estimation scheme of battery SoC/SoH for the second-use of lithium-ion power batteries in EVs under different cycles using an adaptive extended Kalman filter (AEKF). First, according to the collected battery test data at different aging cycle levels, the external battery characteristics are analyzed, and then a cycle-dependent equivalent circuit model (cECM) is built up. Next, the parameter estimation of this battery model is performed via a recursive least square (RLS) algorithm. Meanwhile, the variations in internal battery parameters of the cycle numbers are fitted and synthesized. Moreover, validation of the estimated parameters is further carried out. Based on this enhanced battery model, the AEKF algorithm is utilized to fulfill battery SoC/SoH estimation simultaneously. The estimated results of SoC/SoH are obtained for a LiCoO2 cell in the case of CCC (constant current condition) under different cycle times. The results show that this proposed co-estimation scheme can predict battery SoC and SoH well, wherein the peak values of the SoC errors are less than 2.2%, and the peak values of SoH, calculated by the estimated capacity and internal resistance, are less than 1.7% and 2.2%, respectively. Hence, this has important guiding significance for realizing the cascade utilization of lithium-ion power batteries.

Funder

Nan Jiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3