Author:
Yuan Sheng,Du Yuying,Liu Mingtang,Yue Shuang,Li Bin,Zhang Hao
Abstract
Aggregate classification is the prerequisite for making concrete. Traditional aggregate identification methods have the disadvantages of low accuracy and a slow speed. To solve these problems, a miniature aggregate detection and classification model, based on the improved You Only Look Once (YOLO) algorithm, named YOLOv5-ytiny is proposed in this study. Firstly, the C3 structure in YOLOv5 is replaced with our proposed CI structure. Then, the redundant part of the Neck structure is pruned by us. Finally, the bounding box regression loss function GIoU is changed to the CIoU function. The proposed YOLOv5-ytiny model was compared with other object detection algorithms such as YOLOv4, YOLOv4-tiny, and SSD. The experimental results demonstrate that the YOLOv5-ytiny model reaches 9.17 FPS, 60% higher than the original YOLOv5 algorithm, and reaches 99.6% mAP (the mean average precision). Moreover, the YOLOv5-ytiny model has significant speed advantages over CPU-only computer devices. This method can not only accurately identify the aggregate but can also obtain the relative position of the aggregate, which can be effectively used for aggregate detection.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献