Tuning Bolometric Parameters of Sierpinski Fractal Antenna-Coupled Uncracked/Cracked SWCNT Films by Thermoelectric Characterization at UHF Frequencies

Author:

Vera-Reveles GustavoORCID,González-Fernández José VulfranoORCID,Castillo-León Juan FranciscoORCID,González Francisco JavierORCID,Díaz de León-Zapata Ramón,de la Rosa-Zapata Ariel Benjamín,Orocio-Castro Norma,Simón JorgeORCID

Abstract

In this work, the bolometric parameters of Sierpinski fractal antenna-coupled SWCNT semi-metallic films are obtained by thermoelectric characterization, this in order to find out the performance as bolometer. The method was based on an experimental setup considering a line-of-sight wireless link between two identical planar fractal antennas, infrared thermography, and electrical resistance measurements. The experimental setup considered the antennas resonant frequencies. Both the transmitting and receiving antenna were third-iteration Sierpinski fractal dipoles designed to work at UHF frequencies. Films made either of cracked or uncracked SWCNT films were each separately coupled to the receiving fractal antenna. Measurements showed that the receiving antenna that was impinged with radiation at UHF frequencies coming from the transmitting antenna, experienced as it was expected an induction of electric current, the induced current flowed through the film producing a temperature change, which in turn caused changes in the radiated heat of the film, as well as changes in the electrical resistance known as Temperature Coefficient of Resistance TCR. The maximum value of TCR for uncracked SWCNT films was −3.6%K−1, higher than the one observed for cracked SWCNT films which exhibited a maximum value of −1.46%K−1. Measurements for conversion of incident radiation to electrical signals known as the Voltage Responsivity ℜv, exhibited values of 9.4 mV/W and 1.4 mV/W for uncracked SWCNT films and cracked SWCNT films, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heptagonal Fractal Antenna with Slit for Improved Efficiency;2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS);2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3