Three-Dimensional Reconstruction Method for Bionic Compound-Eye System Based on MVSNet Network

Author:

Deng Xinpeng,Qiu Su,Jin Weiqi,Xue Jiaan

Abstract

In practical scenarios, when shooting conditions are limited, high efficiency of image shooting and success rate of 3D reconstruction are required. To achieve the application of bionic compound eyes in small portable devices for 3D reconstruction, auto-navigation, and obstacle avoidance, a deep learning method of 3D reconstruction using a bionic compound-eye system with partial-overlap fields was studied. We used the system to capture images of the target scene, then restored the camera parameter matrix by solving the PnP problem. Considering the unique characteristics of the system, we designed a neural network based on the MVSNet network structure, named CES-MVSNet. We fed the captured image and camera parameters to the trained deep neural network, which can generate 3D reconstruction results with good integrity and precision. We used the traditional multi-view geometric method and neural networks for 3D reconstruction, and the difference between the effects of the two methods was analyzed. The efficiency and reliability of using the bionic compound-eye system for 3D reconstruction are proved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Multistage SFM: A Coarse-to-Fine Approach for 3D Reconstruction;Shah;arXiv,2015

2. Photo tourism

3. Efficient tree-structured SfM by RANSAC generalized Procrustes analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3