A Modular, Extensible, and Modelica-Standard-Compliant OpenModelica Compiler Framework in Julia Supporting Structural Variability

Author:

Tinnerholm JohnORCID,Pop AdrianORCID,Sjölund MartinORCID

Abstract

Nowadays, industrial products are getting increasingly complex, and time-to-market is significantly shorter. Modeling and simulation tools for cyber-physical systems need to keep up with the increased complexity. This paper presents OpenModelica.jl, a modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl and supporting Variable Structured Systems. We extended the Modelica language with three new operators to support continuous-time mode-switching and reconfiguration via recompilation at runtime. Therefore, our compiler supports the Modelica language and variable structure systems via the aforementioned extensions. To our knowledge, there are no other Modelica tools available that support both standard Modelica and variable structure systems. We evaluated our framework using a standardized benchmark suite, in terms of simulation, compilation and recompilation performance. The results concerning compilation and simulation time performance were compared with the results of running the existing OpenModelica compiler with the same set of models. A custom benchmark was devised to estimate the cost in terms of recompilation when simulating variable structure systems. The performance experiments showed that OpenModelica.jl is currently about four times slower in terms of compilation time when compiling a transmission line model with tens of thousands of equations and variables. The difference in simulation performance between the two compilers was negligable. Furthermore, the impact of recompilation during the simulation was usually small compared with the simulation time for long simulations. The results are promising for a prototype, and we outline approaches to further improve both compilation and simulation performance as future research.

Funder

Swedish Foundation for Strategic Research

Vinova

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3