Force Tracking Control of Functional Electrical Stimulation via Hybrid Active Disturbance Rejection Control

Author:

Huo BenyanORCID,Wang Ruishun,Qin Yunhui,Wu Zhenlong,Bian GuibinORCID,Liu YanhongORCID

Abstract

Stroke is a worldwide disease with a high incidence rate. After surviving a stroke, most patients are left with impaired upper or lower limb. Muscle force training is vital for stroke patients to recover limb function and improve their quality of life. This paper proposes a force tracking control method for upper limb based on functional electrical stimulation (FES), which is a promising rehabilitation approach. A modified Hammerstein model is proposed to describe the nonlinear dynamics of biceps brachii, which consists of a nonlinear mapping function, linear dynamics and time delay component to represent the biochemical process of muscle contraction. A quick model identification method is presented based on the least square algorithm. To deal with the variation of muscle dynamics, a hybrid active disturbance rejection control (ADRC) is proposed to estimate and compensate for the model uncertainty and unmeasured disturbances. The parameter tuning process is given. In the end, the performance of the proposed methods is verified via simulations and experiments. Compared with the Proportional integral derivative controller (PID) method, the proposed methods could suppress the model uncertainty and improve the tracking precision.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science \& Technology Research Project in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3