Ransomware Detection System for Android Applications

Author:

Alsoghyer Samah,Almomani ImanORCID

Abstract

Android ransomware is one of the most threatening attacks nowadays. Ransomware in general encrypts or locks the files on the victim’s device and requests a payment in order to recover them. The available technologies are not enough as new ransomwares employ a combination of techniques to evade anti-virus detection. Moreover, the literature counts only a few studies that have proposed static and/or dynamic approaches to detect Android ransomware in particular. Additionally, there are plenty of open-source malware datasets; however, the research community is still lacking ransomware datasets. In this paper, the state-of-the-art of Android ransomware detection approaches were investigated. A deep comparative analysis was conducted which shed the key differences among the existing solutions. An application programming interface (API)-based ransomware detection system (API-RDS) was proposed to provide a static analysis paradigm for detecting Android ransomware apps. API-RDS focuses on examining API packages’ calls as leading indicator of ransomware activity to discriminate ransomware with high accuracy before it harms the user’s device. API packages’ calls of both benign and ransomware apps were thoroughly analyzed and compared. Significant API packages with corresponding methods were identified. The experimental results show that API-RDS outperformed other recent related approaches. API-RDS achieved 97% accuracy while reducing the complexity of the classification model by 26% due to features reduction. Moreover, this research designed a proactive mechanism based on a high quality unique ransomware dataset without duplicated samples. 2959 ransomware samples were collected, tested and reduced by almost 83% due to samples duplication. This research also contributes to constructing an up-to-date, unique dataset that covers the majority of existing Android ransomware families and recent clean apps that could be used as a labeled reference for research community.

Funder

College of Computer and Information Sciences, Prince Sultan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference83 articles.

1. Comparative analysis of various ransomware virii

2. Evolving Threat Agents: Ransomware and Their Variants;Rajput;Int. J. Comput. Appl.,2017

3. WannaCry Ransomware ’from North Korea’ Say UK and UShttp://www.telegraph.co.uk/news/2017/06/15/wannacry-ransomware-north-korea-say-uk-us/

4. University College London Hit by Ransomware Attackhttps://www.theguardian.com/technology/2017/jun/15/university-college-london-hit-by-ransomware-attack-hospitals-email-phishing

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3