Abstract
RFID (radio-frequency identification) technology is rapidly emerging for the localization of moving objects and humans. Due to the blockage of radio signals by the human body, the localization accuracy achieved with a single tag is not satisfactory. This paper proposes a method based on an RFID tag array and laser ranging information to address the localization of live moving objects such as humans or animals. We equipped a human with a tag array and calculated the phase-based radial velocity of every tag. The laser information was, first, clustered through the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm and then laser-based radial velocity was calculated. This velocity was matched with phase-based radial velocity to get best matching clusters. A particle filter was used to localize the moving human by fusing the matching results of both velocities. Experiments were conducted by using a SCITOS G5 service robot. The results verified the feasibility of our approach and proved that our approach significantly increases localization accuracy by up to 25% compared to a single tag approach.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference47 articles.
1. Health Monitoring using RFID;Pai;Am. J. Intell. Syst.,2017
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献