Abstract
Maximum power point tracking (MPPT) techniques are a fundamental part in photovoltaic system design for increasing the generated output power of a photovoltaic array. Whilst varying techniques have been proposed, the adaptive neural-fuzzy inference system (ANFIS) is the most powerful method for an MPPT because of its fast response and less oscillation. However, accurate training data are a big challenge for designing an efficient ANFIS-MPPT. In this paper, an ANFIS-MPPT method based on a large experimental training data is designed to avoid the system from experiencing a high training error. Those data are collected throughout the whole of 2018 from experimental tests of a photovoltaic array installed at Brunel University, London, United Kingdom. Normally, data from experimental tests include errors and therefore are analyzed using a curve fitting technique to optimize the tuning of ANFIS model. To evaluate the performance, the proposed ANFIS-MPPT method is simulated using a MATLAB/Simulink model for a photovoltaic system. A real measurement test of a semi-cloudy day is used to calculate the average efficiency of the proposed method under varying climatic conditions. The results reveal that the proposed method accurately tracks the optimized maximum power point whilst achieving efficiencies of more than 99.3%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献