A Distributed Token Passing Protocol for Time Constrained Data Gathering in VANETs

Author:

Chiti FrancescoORCID,Fantacci RomanoORCID,Nizzi FrancescaORCID,Pierucci LauraORCID,Borrego CarlosORCID

Abstract

This paper proposes a novel approach for time constrained information gathering in a typical Vehicular Ad Hoc Network (VANET), based on a token passing scheme, adapted to wireless communications by creating a virtual ring where nodes are connected to a predecessor and a successor node. To address the typical fast topology changes of VANETs, we proposed a specific approach, called Tom Thumb that is a distributed protocol that node-by-node circulates a special packet, called token, which collects the information stored in each vehicle until returning to the first unit within a specified time constraint. The protocol has been properly designed in terms of (i) the more effective hop-by-hop and distributed heuristic implementing the objective function (ii) the token packet format, i.e., the syntax and semantics of its fields. Finally, the performance of the proposed approach is validated for different time constraints and numbers of vehicles, always pointing out a remarkable gain, especially in the presence of severe constraints, i.e., in terms of time deadline, collected information amount and success probability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. Vehicle ad hoc networks: Applications and related technical issues;Toor;IEEE Commun. Surv. Tutor.,2008

2. Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects;Kaiwartya;IEEE Access,2016

3. Enhanced Caching for Geocast Routing in Vehicular Ad Hoc Network;Kaiwartya,2014

4. 5G Mobile Communications;Chiti,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3