Abstract
Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) image. In order to address the SISR problem, recently, deep convolutional neural networks (CNNs) have achieved remarkable progress in terms of accuracy and efficiency. In this paper, an innovative technique, namely a multi-scale inception-based super-resolution (SR) using deep learning approach, or MSISRD, was proposed for fast and accurate reconstruction of SISR. The proposed network employs the deconvolution layer to upsample the LR image to the desired HR image. The proposed method is in contrast to existing approaches that use the interpolation techniques to upscale the LR image. Primarily, interpolation techniques are not designed for this purpose, which results in the creation of undesired noise in the model. Moreover, the existing methods mainly focus on the shallow network or stacking multiple layers in the model with the aim of creating a deeper network architecture. The technique based on the aforementioned design creates the vanishing gradients problem during the training and increases the computational cost of the model. Our proposed method does not use any hand-designed pre-processing steps, such as the bicubic interpolation technique. Furthermore, an asymmetric convolution block is employed to reduce the number of parameters, in addition to the inception block adopted from GoogLeNet, to reconstruct the multiscale information. Experimental results demonstrate that the proposed model exhibits an enhanced performance compared to twelve state-of-the-art methods in terms of the average peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) with a reduced number of parameters for the scale factor of 2 × , 4 × , and 8 × .
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献