Multi-Scale Inception Based Super-Resolution Using Deep Learning Approach

Author:

Muhammad Wazir,Aramvith SupavadeeORCID

Abstract

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) image. In order to address the SISR problem, recently, deep convolutional neural networks (CNNs) have achieved remarkable progress in terms of accuracy and efficiency. In this paper, an innovative technique, namely a multi-scale inception-based super-resolution (SR) using deep learning approach, or MSISRD, was proposed for fast and accurate reconstruction of SISR. The proposed network employs the deconvolution layer to upsample the LR image to the desired HR image. The proposed method is in contrast to existing approaches that use the interpolation techniques to upscale the LR image. Primarily, interpolation techniques are not designed for this purpose, which results in the creation of undesired noise in the model. Moreover, the existing methods mainly focus on the shallow network or stacking multiple layers in the model with the aim of creating a deeper network architecture. The technique based on the aforementioned design creates the vanishing gradients problem during the training and increases the computational cost of the model. Our proposed method does not use any hand-designed pre-processing steps, such as the bicubic interpolation technique. Furthermore, an asymmetric convolution block is employed to reduce the number of parameters, in addition to the inception block adopted from GoogLeNet, to reconstruct the multiscale information. Experimental results demonstrate that the proposed model exhibits an enhanced performance compared to twelve state-of-the-art methods in terms of the average peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) with a reduced number of parameters for the scale factor of 2 × , 4 × , and 8 × .

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3