Author:
Qin ,Mo ,Xun ,Zhang ,Dong
Abstract
Due to the lower on-state resistance, direct current (DC) solid state circuit breakers (SSCBs) based on silicon-carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) can reduce on-state losses and the investment of the cooling system when compared to breakers based on silicon (Si) MOSFETs. However, SiC MOSFETs, with smaller die area and higher current density, lead to weaker short-circuit ability, shorter short-circuit withstand time and higher protection requirements. To improve the reliability and short-circuit capability of SiC-based DC solid state circuit breakers, the short-circuit fault mechanisms of Si MOSFETs and SiC MOSFETs are revealed. Combined with the desaturation detection (DESAT), a “soft turn-off” short-circuit protection method based on source parasitic inductor is proposed. When the DESAT protection is activated, the “soft turn-off” method can protect the MOSFET against short-circuit and overcurrent. The proposed SSCB, combined with the flexibility of the DSP, has the μs-scale ultrafast response time to overcurrent detection. Finally, the effectiveness of the proposed method is validated by the experimental platform. The method can reduce the voltage stress of the power device, and it can also suppress the short-circuit current.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Foundation of Graduation Innovation Center at Nanjing University of Aeronautics and Astronautics
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献