Wireless Power and Data Transmission System of Submarine Cable-Inspecting Robot Fish and Its Time-Sharing Multiplexing Method

Author:

Chen ,Sun ,Huang ,Zhou ,Meng ,Tang

Abstract

In this paper, a hybrid system topology with one-way wireless charging function and the function of the bi-directional data communication is proposed for the problem of electric energy replenishment and data transmission faced by robot fish in the implementation of autonomous submarine cable inspection. Three working modes of the system and the time-sharing multiplexing method are studied. In the power transmission mode, high-efficiency wireless charging is realized by utilizing the transmission characteristics of a series–series (SS)-type resonant network which involves series resonant networks in both the primary side and the secondary side. In the alignment detection and handshake communication mode, the charging platform distance recognition and the handshake signal transmission are implemented through a series–parallel (SP)-type resonant network based on the ASK (amplitude shift keying) modulation method. In the high-speed data transmission mode, the reverse (secondary to primary) high-speed transmission of the inspection data is achieved through a SP-type resonant network based on the OFDM (orthogonal frequency division multiplexing) modulation method. The three modes share the same coupled coils via a reconfigurable resonant network. The working principle of the system is expounded, the system characteristics under each working mode are analyzed, and the time-division multiplexing control strategy is given. The rationality and effectiveness of the scheme are verified by experiments.

Funder

National Natural Science Foundation of China

State Grid Corporation Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

1. Strain and Temperature Monitoring of 110 kV Optical Fiber Composite Submarine Power Cable;Anqiang;High Volt. Eng.,2014

2. Autonomous underwater vehicles for submarine cable inspection: Experimental results;Balasuriya;IEEE,2001

3. The Development of Inductive and Resonant Wireless Power Transfer Technology;Zhang;Trans. China Electrotech. Soc.,2017

4. Research status of autonomous underwater vehicles in China

5. Modeling and Analysis of Magnetic Resonance Wireless Power Transmission Systems;Yuan;Trans. China Electrotech. Soc.,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3