Multi-View Projection Learning via Adaptive Graph Embedding for Dimensionality Reduction

Author:

Li Haohao1,Gao Mingliang2ORCID,Wang Huibing3,Jeon Gwanggil14ORCID

Affiliation:

1. Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China

3. College of Information and Science Technology, Dalian Maritime University, Dalian 116021, China

4. Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

In order to explore complex structures and relationships hidden in data, plenty of graph-based dimensionality reduction methods have been widely investigated and extended to the multi-view learning field. For multi-view dimensionality reduction, the key point is extracting the complementary and compatible multi-view information to analyze the complex underlying structure of the samples, which is still a challenging task. We propose a novel multi-view dimensionality reduction algorithm that integrates underlying structure learning and dimensionality reduction for each view into one framework. Because the prespecified graph derived from original noisy high-dimensional data is usually low-quality, the subspace constructed based on such a graph is also low-quality. To obtain the optimal graph for dimensionality reduction, we propose a framework that learns the affinity based on the low-dimensional representation of all views and performs the dimensionality reduction based on it jointly. Although original data is noisy, the local structure information of them is also valuable. Therefore, in the graph learning process, we also introduce the information of predefined graphs based on each view feature into the optimal graph. Moreover, assigning the weight to each view based on its importance is essential in multi-view learning, the proposed GoMPL automatically allocates an appropriate weight to each view in the graph learning process. The obtained optimal graph is then adopted to learn the projection matrix for each individual view by graph embedding. We provide an effective alternate update method for learning the optimal graph and optimal subspace jointly for each view. We conduct many experiments on various benchmark datasets to evaluate the effectiveness of the proposed method.

Funder

Science Foundation of Zhejiang Sci-Tech University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3