A Novel Error-Correcting Particle Swarm Optimization Back Propagation Fault Diagnosis Method for Microgrid

Author:

Wang Lijing1,Yang Fan2ORCID,Xu Fengxia1,Wang Zifei13,Li Jiwei4,Yao Wenjing4

Affiliation:

1. The Engineering Technology Research Center for Precision Manufacturing Equipment and Industrial Perception of Heilongjiang Province, Qiqihar University, Qiqihar 161000, China

2. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China

3. Daqing Petrochemical Engineering Company Limited, Daqing 163714, China

4. State Grid Heilongjiang Provincial Electric Power Co., Ltd., Jixi Power Supply Company, Jixi 158100, China

Abstract

Compared to traditional power grids, microgrids have a more flexible operating mode. There are various distributed power sources within the microgrid, and different types of distributed power sources have different control methods. Once a short-circuit fault occurs in the microgrid, these characteristics will increase the difficulty of microgrid fault diagnosis and reduce the accuracy of microgrid fault diagnosis. This paper proposes an error-correcting particle swarm optimization back propagation microgrid fault diagnosis method for the diagnosis of short-circuit faults in microgrids that identifies the accuracy of alarm signals, corrects unreasonable signals, and obtains the correct fault set of the microgrid through the temporal logic relationship between each protection. Using the particle swarm optimization back propagation (PSO-BP) neural network algorithm to train fault alarm signals, fast convergence can be achieved, and accurate diagnostic results can be obtained after the sixth generation training is completed. As this fault diagnosis algorithm is applied to line protection equipment, it can be used to diagnose all types of short-circuit faults. This algorithm is easy to implement and has a small data scale, which is conducive to efficient and concise fault diagnoses in microgrids.

Funder

Heilongjiang Provincial Natural Science Foundation of China

Fundamental Research Funds in Heilongjiang Provincial Universities

Science and Technology Project of State Grid Heilongjiang Electric Power Co., Ltd.

Heilongjiang Province Discipline collaborative innovation Achievement Construction Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3