Low-Computation Adaptive Saturated Self-Triggered Tracking Control of Uncertain Networked Systems

Author:

Wu Wenjing1,Xu Ning2,Niu Ben3ORCID,Zhao Xudong4,Ahmad Adil M.5ORCID

Affiliation:

1. College of Control Science and Engineering, Bohai University, Jinzhou 121013, China

2. College of Information Science and Technology, Bohai University, Jinzhou 121013, China

3. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

4. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China

5. Communication Systems and Networks Research Group, Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 22254, Saudi Arabia

Abstract

In this paper, a low-computation adaptive self-triggered tracking control scheme is proposed for a class of strict-feedback nonlinear systems with input saturation. By introducing two novel error transformation functions, the designed low-computation adaptive control scheme can overcome the problem of complexity explosion in the absence of any filters, such that the developed control scheme is more applicable. In addition, to save communication resources in networked systems, a self-triggered communication strategy is proposed which can predict the next trigger point based on the current information. Compared with traditional event-triggered mechanisms, the computational burden arising from continuous monitoring of threshold conditions was successfully avoided. Furthermore, the input saturation problem considered in this paper prevents the overload phenomenon caused by signal jumps, and the adverse effects are compensated by introducing an auxiliary system. The effectiveness of the developed control scheme is verified through a simulation example.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3