Underwater Target Detection Algorithm Based on Feature Fusion Enhancement

Author:

Chen Liang1ORCID,Yin Tao1,Zhou Shaowu1,Yi Guo1,Fan Di2,Zhao Jin1

Affiliation:

1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Underwater robots that use optical images for dynamic target detection often encounter image blurring, poor contrast, and indistinct target features. As a result, the underwater robots have poor detection performance with a high rate of missed detections. To overcome these issues, a feature-enhanced algorithm for underwater target detection has been proposed in this paper. Based on YOLOv7, a feature enhancement module utilizing a triple-attention mechanism is developed to improve the network’s feature extraction ability without increasing the computational or algorithmic parameter quantity. Moreover, comprehensively considering the impact of a redundant feature in the images on detection accuracy, the ASPPCSPC structure was built. A parallel spatial convolutional pooling structure based on the original feature pyramid fusion structure, SPPCSPC, is introduced. The GhostNet network was utilized to optimize its convolution module, which reduces the model’s parameter quantity and optimizes the feature map. Furthermore, a Cat-BiFPN structure was designed to address the problem of fine-grained information loss in YOLOv7 feature fusion by adopting a weighted nonlinear fusion strategy to enhance the algorithm’s adaptability. Using the UPRC offshore dataset for validation, the algorithm’s detection accuracy was increased by 2.9%, and the recall rate was improved by 2.3% compared to the original YOLOv7 algorithm. In addition, the model quantity is reduced by 11.2%, and the model size is compressed by 10.9%. The experimental results significantly establish the validity of the proposed algorithm.

Funder

Postgraduate Scientific Research Innovation Project of Hunan Province

National Natural Science Foundation of China

A Project Supported by Scientific Research Fund of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on marine flexible biological target detection based on improved YOLOv8 algorithm;PeerJ Computer Science;2024-08-22

2. Research on Underwater Target Detection Model Based on ResNet50_SIMAM;Computer Science and Application;2024

3. An improved multidimensional high-parallelism pulsation array;2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3