Analysis and Suppression of Rectifier Diode Voltage Oscillation Mechanism in IPOS High-Power PSFB Converters

Author:

Sun Fei1,Chen Jun1,Lin Xinchun2,Liao Dongchu1

Affiliation:

1. School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China

2. School of Electrical & Electronic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Abstract

Parasitic oscillations in the rectifier diode voltage of phase-shifted-full-bridge (PSFB) converters limit their application in high-voltage and high-power situations. The conventional analysis method for parasitic oscillation in rectifier diode voltage in PSFB converters treats the filter inductor as a constant current source and fails to consider the impact of changes in filter inductor current on the rectifier diode’s parasitic oscillation. Consequently, this approach does not apply when analyzing the rectifier diode voltage’s parasitic oscillations in high-power PSFB converters employing an input-parallel output-series (IPOS) configuration with interleaved drive. This research paper introduces an innovative equivalent circuit model for analyzing the parasitic oscillations of rectifier diode voltage in IPOS high-power PSFB converters. The model takes into account the mutual influence of rectifier diode voltage oscillations between submodules under interleaved control, considering the influence of changes in filter inductor current on rectifier diode parasitic oscillation. Based on the circuit model, we explain the mechanism of multiple oscillations of the rectifier diode voltage and the reason for the high peak of the first oscillation. Consequently, the interplay of rectifier diode voltage oscillations in IPOS high-power k-module PSFB converters under interleaved control is analyzed. To mitigate the adverse effects of rectifier diode voltage parasitic oscillation, a buffering strategy involving the connection of a resistor capacitor diode (RCD) circuit in parallel after the rectifier bridge is adopted, considering the structure of the IPOS high-power PSFB converter. The study provides a detailed analysis of the circuit’s operation mechanism upon incorporating the RCD buffer circuit and establishes the relationship between buffer capacitance, resistance, and spike voltage. Furthermore, a design method for buffer capacitors and discharge resistors in buffer circuits is presented. Finally, a 100 kW prototype is tested to verify the rectifier diode voltage oscillation mechanism of the IPOS high-power PSFB converter and the rationality of the buffer capacitor and discharge resistor design method under the interleaved drive approach.

Funder

National Natural Science Foundation of China

Key Research and development projects of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3