A Hybrid CNN-LSTM-Based Approach for Pedestrian Dead Reckoning Using Multi-Sensor-Equipped Backpack

Author:

Woyano Feyissa12ORCID,Park Sangjoon12,Blagovest Iordanov Vladimirov2,Lee Soyeon2

Affiliation:

1. Department of Computer Software and Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

2. Department of Computer Software, School of Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

Abstract

Researchers in academics and companies working on location-based services (LBS) are paying close attention to indoor localization based on pedestrian dead reckoning (PDR) because of its infrastructure-free localization method. PDR is the fundamental localization technique that utilize human motion to perform localization in a relative sense with respect to the initial position. The size, weight, and power consumption of micromechanical systems (MEMS) embedded into smartphones are remarkably low, making them appropriate for localization and positioning. Traditional pedestrian PDR methods predict position and orientation using stride length and continuous integration of acceleration in step and heading system (SHS)-based PDR and inertial navigation system (INS)-PDR, respectively. However, these two approaches provide accumulations of error and do not effectively leverage the inertial measurement unit (IMU) sequences. The PDR navigation solution relays on the standard of the MEMS, which yields PDR with the acceleration and angular velocity from the accelerometer and gyroscope, respectively. However, low-cost small MEMSs endure enormous error sources such as bias and noise. Hence, MEMS assessments lead to navigation solution drifts when utilized as inputs to the PDR. As a consequence, numerous methods have been proposed to mitigate and model the errors related to MEMS. Deep learning-based dead reckoning algorithms are provided to address aforementioned issues owing to the end-to-end learning framework. This paper proposes a hybrid convolutional neural network (CNN) and long short-term memory network (LSTM)-based inertial PDR system that extracts inertial measurement units (IMU) sequence features. The end-to-end learning framework is introduced to leverage the efficiency of low-cost MEMS because data-driven solutions provide more complete knowledge of the ever-increasing data volume and computational power over the filtering model approach. A CNN-LSTM model was employed to capture local spatial and temporal features. Experiments conducted on odometry datasets collected from multi-sensor backpack devices demonstrated that the proposed architecture outperformed previous traditional PDR methods, demonstrating that the root mean square error (RMSE) for the best user was 0.52 m. On the handheld smartphone-only dataset the best achieved R2 metric was 0.49.

Funder

ETRI Research and Development Support Program of MSIT/IITP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3