Affiliation:
1. School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
Abstract
Non-intrusive load monitoring (NILM) is the practice of estimating power consumption of a single household appliance using data from a total power meter of the user’s house. The transformer model has emerged as a popular method for handling NILM problems. However, with the increase in data from electricity meters, there is a need for research focusing on the accuracy and computational complexity of the transformer model. To address this, this paper proposes a sequence-to-sequence load decomposition structure named GTCN, which combines the gate-transformer and convolutional neural networks (CNNs). GTCN introduces a gating mechanism to reduce the number of parameters for training the model while maintaining performance. The introduction of CNNs can effectively capture local features that the gate-transformer may not be able to capture, thereby improving the accuracy of power estimation of individual household appliances. The results of the experiments, based on the UK-DALE dataset, illustrate that GTCN not only demonstrates excellent decomposition performance but also reduces the model parameters compared to conventional transformers. Moreover, the proposed GTCN structure, despite maintaining the same number of model parameters as the traditional transformer architecture after incorporating CNNs, outperforms the conventional transformer model, as well as current seq2seq and R-LSTM technologies, and achieves enhanced prediction accuracy and improved generalization capability.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献