DRL-Based Backbone SDN Control Methods in UAV-Assisted Networks for Computational Resource Efficiency

Author:

Song Inseok1,Tam Prohim1ORCID,Kang Seungwoo1,Ros Seyha1,Kim Seokhoon12

Affiliation:

1. Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea

2. Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

The limited coverage extension of mobile edge computing (MEC) necessitates exploring cooperation with unmanned aerial vehicles (UAV) to leverage advanced features for future computation-intensive and mission-critical applications. Moreover, the workflow for task offloading in software-defined networking (SDN)-enabled 5G is significant to tackle in UAV-MEC networks. In this paper, deep reinforcement learning (DRL) SDN control methods for improving computing resources are proposed. DRL-based SDN controller, termed DRL-SDNC, allocates computational resources, bandwidth, and storage based on task requirements, upper-bound tolerable delays, and network conditions, using the UAV system architecture for task exchange between MECs. DRL-SDNC configures rule installation based on state observations and agent evaluation indicators, such as network congestion, user equipment computational capabilities, and energy efficiency. This paper also proposes the training deep network architecture for the DRL-SDNC, enabling interactive and autonomous policy enforcement. The agent learns from the UAV-MEC environment through experience gathering and updates its parameters using optimization methods. DRL-SDNC collaboratively adjusts hyperparameters and network architecture to enhance learning efficiency. Compared with baseline schemes, simulation results demonstrate the effectiveness of the proposed approach in optimizing resource efficiency and achieving satisfied quality of service for efficient utilization of computing and communication resources in UAV-assisted networking environments.

Funder

Institute of Information & communications Technology Planning & Evaluation

BK21 FOUR

National Research Foundation of Korea (NRF), Ministry of Education

Soonchunhyang University Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3