Affiliation:
1. Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea
2. Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
Abstract
The limited coverage extension of mobile edge computing (MEC) necessitates exploring cooperation with unmanned aerial vehicles (UAV) to leverage advanced features for future computation-intensive and mission-critical applications. Moreover, the workflow for task offloading in software-defined networking (SDN)-enabled 5G is significant to tackle in UAV-MEC networks. In this paper, deep reinforcement learning (DRL) SDN control methods for improving computing resources are proposed. DRL-based SDN controller, termed DRL-SDNC, allocates computational resources, bandwidth, and storage based on task requirements, upper-bound tolerable delays, and network conditions, using the UAV system architecture for task exchange between MECs. DRL-SDNC configures rule installation based on state observations and agent evaluation indicators, such as network congestion, user equipment computational capabilities, and energy efficiency. This paper also proposes the training deep network architecture for the DRL-SDNC, enabling interactive and autonomous policy enforcement. The agent learns from the UAV-MEC environment through experience gathering and updates its parameters using optimization methods. DRL-SDNC collaboratively adjusts hyperparameters and network architecture to enhance learning efficiency. Compared with baseline schemes, simulation results demonstrate the effectiveness of the proposed approach in optimizing resource efficiency and achieving satisfied quality of service for efficient utilization of computing and communication resources in UAV-assisted networking environments.
Funder
Institute of Information & communications Technology Planning & Evaluation
BK21 FOUR
National Research Foundation of Korea (NRF), Ministry of Education
Soonchunhyang University Research Fund
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献