Hybrid Features by Combining Visual and Text Information to Improve Spam Filtering Performance

Author:

Nam Seong-Guk,Jang Yonghun,Lee Dong-GunORCID,Seo Yeong-SeokORCID

Abstract

The development of information and communication technology has created many positive outcomes, including convenience for people; however, cases of unsolicited communication, such as spam, also occur frequently. Spam is the indiscriminate transmission of unwanted information by anonymous users, called spammers. Spam content is indiscriminately transmitted to users in various forms, such as SMS, e-mail, and social network service posts, causing negative experiences for users of the service, while also creating costs, such as unnecessarily large amounts of network traffic. In addition, spam content includes phishing, hype or false advertising, and illegal content. Recently, spammers have also used images that contain stimulating content to effectively attract users’ curiosity and attention. Image spam contains more complex information than text, making it more difficult to analyze and to generalize its properties compared to text. Therefore, existing text-based spam detectors are vulnerable to spam image attacks, resulting in a decline in service quality. In this paper, a “hybrid features by combining visual and text information to improve spam filtering performance” method is proposed to reduce the occurrence of misclassification. The proposed method employs three sub-models to extract features from spam images and a classifier model to output the results using the features. Each sub-model extracts topic-, word-, and image-embedding-based features from spam images. In addition, the sub-models use optical character recognition, latent Dirichlet allocation, and word2Vec techniques to extract features from images. To evaluate spam image classification performance, the spam classifiers were trained using the extracted features and the results were measured using a confusion matrix. Our model achieved an accuracy of 0.9814 and a macro-F1 score of 0.9813. In addition, the application of OCR evasion techniques resulted in a decrease in recognition performance. Using the proposed model, a mean macro-F1 score of 0.9607 was obtained.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Next-Generation Spam Filtering: Comparative Fine-Tuning of LLMs, NLPs, and CNN Models for Email Spam Classification;Electronics;2024-05-23

2. Analysis of Machine Learning Models for Spam Email Detection and Real-Time Integration;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Hybrid Machine Learning Algorithms for Email and Malware Spam Filtering: A Review;European Journal of Theoretical and Applied Sciences;2024-03-01

4. Email Security Issues, Tools, and Techniques Used in Investigation;Sustainability;2023-07-05

5. Deep learning-based spam image filtering;Alexandria Engineering Journal;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3