SV-FPN: Small Object Feature Enhancement and Variance-Guided RoI Fusion for Feature Pyramid Networks

Author:

Yang Qianhui,Zhang ChanglunORCID,Wang HengyouORCID,He Qiang,Huo Lianzhi

Abstract

Small object detection is one of the research difficulties in object detection, and Feature Pyramid Networks (FPN) is a common feature extractor in deep learning; thus, improving the results of small object detection based on FPN is of great significance in this field. In this paper, SV-FPN is proposed for a small object detection task, which consists of Small Object Feature Enhancement (SOFE) and Variance-guided Region of Interest Fusion (VRoIF). When using FPN as a feature extractor, an SOFE module is designed to enhance the finer-resolution level feature maps from which the small object features are extracted. VRoIF takes the variance of RoI features as the data driver to learn the completeness of several RoI features from different feature layers, which avoids wasting information and introducing noise. Ablation experiments on three public datasets (KITTI, PASCAL VOC 07+12 and MS COCO 2017) demonstrate the effectiveness of SV-FPN, and the mean Average Precision (mAP) of SV-FPN in the three datasets achieves 41.5%, 53.9% and 38.3%, respectively.

Funder

National Natural Science Foundation of China

Projects of Beijing Advanced Innovation Center for Future Urban Design

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. Feature pyramid networks for object detection;Lin;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017

2. An analysis of scale invariance in object detection snip;Singh;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

3. Feature-Fused SSD: Fast detection for small objects;Cao;Proceedings of the Ninth International Conference on Graphic and Image Processing (ICGIP 2017), International Society for Optics and Photonics,2018

4. Sinet: Extreme lightweight portrait segmentation networks with spatial squeeze module and information blocking decoder;Park;Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3