Forward-Looking Imaging Based on the Linear Wavefront of the Modulated Field

Author:

Zhong Yiming,Zhang Yi,Yu Yiwen,Sun HoujunORCID,Zhang Xiangdong

Abstract

The vortex electromagnetic wave improves the range-azimuth forward-looking imaging performance with its spiral spatial phase distribution. However, the beam of the vortex electromagnetic wave is divergent, which makes it difficult to detect the targets near the center of the beam. In addition, the vortex electromagnetic wave only has the phase change in the azimuth direction and can hardly estimate the elevation position of the targets. In this paper, a linear wavefront control method based on the amplitude weighting of the array antenna is proposed. The modulated field has a phase gradient in both azimuth and elevation directions and has a maximum radiation intensity in the center of the beam. The imaging model based on the modulated field is theoretically derived and simulations are conducted to demonstrate the imaging performance. The modulated field constructed by the linear array can realize range-azimuth two-dimensional imaging with azimuth resolution of 1/5 beam width. The modulated field constructed by the circular array can realize range-azimuth-elevation three-dimensional imaging, and the resolution of the azimuth and elevation directions is 1/3 of the beam width.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Wavefront Modulation Method with Converged Energy for Radar Forward-looking Imaging;2024 Photonics & Electromagnetics Research Symposium (PIERS);2024-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3