Review on Haptic Assistive Driving Systems Based on Drivers’ Steering-Wheel Operating Behaviour

Author:

Noubissie Tientcheu Simplice IgorORCID,Du Shengzhi,Djouani KarimORCID

Abstract

With the availability of modern assistive techniques, ambient intelligence, and the Internet of Things (IoT), various innovative assistive environments have been developed, such as driving assistance systems (DAS), where the human driver can be provided with physical and emotional assistance. In this human–machine collaboration system, haptic interaction interfaces are commonly employed because they provide drivers with a more manageable way to interact with other components. From the view of control system theory, this is a typical closed-loop feedback control system with a human in the loop. To make such a system work effectively, both the driving behaviour factors, and the electrical–mechanical components should be considered. However, the main challenge is how to deal with the high degree of uncertainties in human behaviour. This paper aims to provide an insightful overview of the relevant work. The impact of various types of haptic assistive driving systems (haptic guidance and warning systems) on driving behaviour performance is discussed and evaluated. In addition, various driving behaviour modelling systems are extensively investigated. Furthermore, the state-of-the-art driving behaviour controllers are analysed and discussed in driver–vehicle–road systems, with potential improvements and drawbacks addressed. Finally, a prospective approach is recommended to design a robust model-free controller that accounts for uncertainties and individual differences in driving styles in a haptic assistive driving system. The outcome indicated that the haptic feedback system applied to the drivers enhanced their driving performance, lowered their response time, and reduced their mental workload compared to a system with auditory or visual signals or without any haptic system, despite some annoyances and system conflicts. The driving behaviour modelling techniques and the driving behaviour control with a haptic feedback system have shown good matching and improved the steering wheel’s base operation performance. However, mathematical principles, a statistical approach, and the lack of consideration of the individual differences in the driver–vehicle–road system make the modelling and the controller less robust and inefficient for different driving styles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference100 articles.

1. The Measurement of Drivers’ Mental Workload;De Waard;Ph.D. Thesis,1996

2. Characteristics of crashes attributed to the driver having fallen asleep

3. Analysis of the causes of traffic accidents on roads and countermeasures;Sun;Saf. Environ. Eng.,2007

4. Lateral control assistance in car driving: classification, review and future prospects

5. Crash avoidance potential of four passenger vehicle technologies

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3