Precision Measurement System of High-Frequency Signal Based on Equivalent-Time Sampling

Author:

Zang Xiaoxuan,Zhao Jianting,Lu Yunfeng,He Qing

Abstract

A high frequency periodic signal measurement system based on equivalent sampling method is developed. A high-speed sampling voltage tracking circuit, the core component of the system, is described in detail. The circuit can transform the amplitude corresponding to different phase points of the signal undertest into the equivalent DC level through successive approximation of multiple periods. The measurement system designed in this paper completes digital sampling with high accuracy only by connecting the low-cost voltage tracking circuit to the existing commercial instruments, such as two-channel waveform generator and high-precision digital multimeter, which makes the method easy to be generalized. The special structure of the sampling tracking circuit greatly reduces the influence of random noise and time jitter on the measurement results. The experimental results show that the non-linearity error of the system is as low as 0.002%, the bandwidth can reach 200 MHz, and the uncertainty of measuring the RMS of AC voltage with peak value of ±1 V and frequency of 10 kHz, 100 kHz and 1 MHz can reach 2.8 × 10−4 V, 4.6 × 10−4 V and 2.0 × 10−4 V (k = 2), respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

1. Introduction;Wang,1986

2. Design and Realization of High Frequency Voltage Standard Device;Ruan,2012

3. A Simplified Accuracy Enhancement to the Saleh AM/AM Modeling and Linearization of Solid-State RF Power Amplifiers

4. High speed data acquisition system based on equivalent time sampling;Chen;Electr. Meas. Instrum.,2002

5. Design and Implementation of the Equivalent Sampling System of Sampling Oscilloscope;Zhang,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal Required Resolution to Capture the 3D Shape of the Human Back—A Practical Approach;Sensors;2023-09-11

2. Measurement of Pulse Signal Amplitude Parameters;2023 25th International Conference on Digital Signal Processing and its Applications (DSPA);2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3