Fine-Grained Classification of Announcement News Events in the Chinese Stock Market

Author:

Miu FengORCID,Wang Ping,Xiong Yuning,Jia Huading,Liu Wei

Abstract

Determining the event type is one of the main tasks of event extraction (EE). The announcement news released by listed companies contains a wide range of information, and it is a challenge to determine the event types. Some fine-grained event type frameworks have been built from financial news or stock announcement news by domain experts manually or by clustering, ontology or other methods. However, we think there are still some improvements to be made based on the existing results. For example, a legal category has been created in previous studies, which considers violations of company rules and violations of the law the same thing. However, the penalties they face and the expectations they bring to investors are different, so it is more reasonable to consider them different types. In order to more finely classify the event type of stock announcement news, this paper proposes a two-step method. First, the candidate event trigger words and co-occurrence words satisfying the support value are extracted, and they are arranged in the order of common expressions through the algorithm. Then, the final event types are determined using three proposed criteria. Based on the real data of the Chinese stock market, this paper constructs 54 event types (p = 0.927, f = 0.946), and some reasonable and valuable types have not been discussed in previous studies. Finally, based on the unilateral trading policy of the Chinese stock market, we screened out some event types that may not be valuable to investors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Research on Deep Learning Based Event-Driven Stock Prediction;Yi;Ph.D. Thesis,2019

2. DCFEE: A document-level Chinese financial event extraction system based on automatically labeled training data;Yang;Proceedings of the ACL 2018, System Demonstrations,2018

3. Empirical Analysis of the Impact of Stock Events on Abnormal Volatility of Stock Prices;Linghao;Master’s Thesis,2019

4. Cofee: A Comprehensive Ontology for Event Extraction from Text

5. Rules based event extraction from natural language text;Guda;Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT),2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3