ACIMS: Analog CIM Simulator for DNN Resilience

Author:

Ding DongORCID,Wang Lei,Yang Zhijie,Hu Kai,He Hongjun

Abstract

Analog Computing In Memory (ACIM) combines the advantages of both Compute In Memory (CIM) and analog computing, making it suitable for the design of energy-efficient hardware accelerators for computationally intensive DNN applications. However, their use will introduce hardware faults that decrease the accuracy of DNN. In this work, we take Sandwich-Ram as the real hardware example of ACIM and are the first to propose a fault injection and fault-aware training framework for it, named Analog Computing In Memory Simulator (ACIMS). Using this framework, we can simulate and repair the hardware faults of ACIM. The experimental results show that ACIMS can recover 91.0%, 93.7% and 89.8% of the DNN’s accuracy drop through retraining on the MNIST, SVHN and Cifar-10 datasets, respectively; moreover, their adjusted accuracy can reach 97.0%, 95.3% and 92.4%.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering Cost Prediction Model Based on DNN;Scientific Programming;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3