Mobile Collectors for Opportunistic Internet of Things in Smart City Environment with Wireless Power Transfer

Author:

Ijemaru Gerald K.ORCID,Ang Kenneth L.-M.,Seng Jasmine K. P.

Abstract

In the context of Internet of Things (IoT) for Smart City (SC) applications, Mobile Data Collectors (MDCs) can be opportunistically exploited as wireless energy transmitters to recharge the energy-constrained IoT sensor-nodes placed within their charging vicinity or coverage area. The use of MDCs has been well studied and presents several advantages compared to the traditional methods that employ static sinks. However, data collection and transmission from the hundreds of thousands of sensors sparsely distributed across virtually every smart city has raised some new challenges. One of these concerns lies in how these sensors are being powered as majority of the IoT sensors are extremely energy-constrained owing to their smallness and mode of deployments. It is also evident that sensor-nodes closer to the sinks dissipate their energy faster than their counterparts. Moreover, battery recharging or replacement is impractical and incurs very large operational costs. Recent breakthrough in wireless power transfer (WPT) technologies allows the transfer of energy to the energy-hungry IoT sensor-nodes wirelessly. WPT finds applications in medical implants, electric vehicles, wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), mobile phones, and so on. The present study highlights the use of mobile collectors (data mules) as wireless power transmitters for opportunistic IoT-SC operations. Specifically, mobile vehicles used for data collection are further exploited as wireless power transmitters (wireless battery chargers) to wirelessly recharge the energy-constrained IoT nodes placed within their coverage vicinity. This paper first gives a comprehensive survey of the different aspects of wireless energy transmission technologies—architecture, energy sources, IoT energy harvesting modes, WPT techniques and applications that can be exploited for SC scenarios. A comparative analysis of the WPT technologies is also highlighted to determine the most energy-efficient technique for IoT scenarios. We then propose a WPT scheme that exploits vehicular networks for opportunistic IoT-SC operations. Experiments are conducted using simulations to evaluate the performance of the proposed model and to investigate WPT efficiency of a power-hungry opportunistic IoT network for different trade-off factors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3