EREBOTS: Privacy-Compliant Agent-Based Platform for Multi-Scenario Personalized Health-Assistant Chatbots

Author:

Calvaresi DavideORCID,Calbimonte Jean-PaulORCID,Siboni Enrico,Eggenschwiler Stefan,Manzo GaetanoORCID,Hilfiker RogerORCID,Schumacher MichaelORCID

Abstract

Context. Asynchronous messaging is increasingly used to support human–machine interactions, generally implemented through chatbots. Such virtual entities assist the users in activities of different kinds (e.g., work, leisure, and health-related) and are becoming ingrained into humans’ habits due to factors including (i) the availability of mobile devices such as smartphones and tablets, (ii) the increasingly engaging nature of chatbot interactions, (iii) the release of dedicated APIs from messaging platforms, and (iv) increasingly complex AI-based mechanisms to power the bots’ behaviors. Nevertheless, most of the modern chatbots rely on state machines (implementing conversational rules) and one-fits-all approaches, neglecting personalization, data-stream privacy management, multi-topic management/interconnection, and multimodal interactions. Objective. This work addresses the challenges above through an agent-based framework for chatbot development named EREBOTS. Methods. The foundations of the framework are based on the implementation of (i) multi-front-end connectors and interfaces (i.e., Telegram, dedicated App, and web interface), (ii) enabling the configuration of multi-scenario behaviors (i.e., preventive physical conditioning, smoking cessation, and support for breast-cancer survivors), (iii) online learning, (iv) personalized conversations and recommendations (i.e., mood boost, anti-craving persuasion, and balance-preserving physical exercises), and (v) responsive multi-device monitoring interface (i.e., doctor and admin). Results. EREBOTS has been tested in the context of physical balance preservation in social confinement times (due to the ongoing pandemic). Thirteen individuals characterized by diverse age, gender, and country distribution have actively participated in the experimentation, reporting advancements in the physical balance and overall satisfaction of the interaction and exercises’ variety they have been proposed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference66 articles.

1. Human-machine interaction;Johannsen;Control Syst. Robot. Autom.,2009

2. ELIZA—a computer program for the study of natural language communication between man and machine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3