Using the Variable Geometry in a Planar Inductor for an Optimised Performance

Author:

Aldoumani Maha,Yuce Baris,Zhu DibinORCID

Abstract

In this paper, the performance, modelling and application of a planar electromagnetic sensor are discussed. Due to the small size profiles and their non-contact nature, planar sensors are widely used due to their simple and basic design. The paper discusses the experimentation and the finite element modelling (FEM) performed for developing the design of planar coils. In addition, the paper investigates the performance of various topologies of planar sensors when they are used in inductive sensing. This technique has been applied to develop a new displacement sensor. The ANSYS Maxwell FEM package has been used to analyse the models while varying the topologies of the coils. For this purpose, different models in FEM were constructed and then tested with topologies such as circular, square and hexagon coil configurations. The described methodology is considered an effective way for the development of sensors based on planar coils with better performance. Moreover, it also confirms a good correlation between the experimental data and the FEM models. Once the best topology is chosen based on performance, an optimisation exercise was then carried out using uncertainty models. That is, the influence of variables such as number of turns and the spacing between the coils on the output inductance has been investigated. This means that the combined effects of these two variables on the output inductance was studied to obtain the optimum values for the number of turns and the spacing between the coils that provided the highest level of inductance from the coils. Integrated sensor systems are a pre-requisite for developing the concept of smart cities in practice due to the fact that the individual sensors can hardly meet the demands of smart cities for complex information. This paper provides an overview of the theoretical concept of smart cities and the integrated sensor systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3