High Reliability UWB Monopole Antenna Using Planar Embedded Resistance for Mars Subsurface Exploration

Author:

Lu WeiORCID,Li Yuxi,Ji Yicai,Shen Shaoxiang,Tang Chuanjun,Zhou Bin,Fang Guangyou

Abstract

The Tianwen-1 of China is expected to land and explore on the planet Mars in May 2021, carrying a Mars Rover-mounted Subsurface Penetrating Radar (RoSPR) system. A VHF band ultra-wideband (UWB) monopole antenna integrated on the Mars Rover, and described in this paper, has been designed for the subsurface exploration of Mars tens of meters deep. Conventional antenna design methods usually prove difficult in taking into account several key parameters such as miniaturization, broadband characteristics and radiation efficiency. Moreover, there is almost no special research on the reliability of antennas. For this purpose, a miniaturized air-coupled monopole antenna integrated with the Mars Rover has been designed. The overall length of the antenna is 0.13 λ at the lowest operating frequency. In addition, the classical Wu–King profile is improved, which not only satisfies the operating bandwidth of the antenna, but also increases the gain by 3–4 dB. In the design, the innovative application of planar embedded resistance greatly enhances the reliability of the antenna and thereby ensures that the antenna can work on Mars for a long term. This is the first application of this antenna design method in the aerospace field. Because it is difficult to test the low-frequency antenna accurately, a 1:4 scale model of the antenna and Rover is fabricated to equivalently measure the radiation characteristics of the antenna. Furthermore, the performance and practicability of the antenna and radar system are verified on the glacier.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3