Near-Field Immunity Test Method for Fast Radiated Immunity Test Debugging of Automotive Electronics

Author:

Yousaf JawadORCID,Lee Doojin,Han JunHee,Lee Hosang,Faisal Muhammad,Kim Jeongeun,Nah Wansoo

Abstract

This study presents a near-field immunity test (NFIT) method for the fast debugging of radiated susceptibility of industrial devices. The proposed approach is based on the development of an NFIT setup which comprises of developed near-field electric and magnetic field probes and device under test (DUT). The developed small-size and handy near-field testing probes inject the high electric (up to 1000 V/m) and magnetic (up to 2.4 A/m) fields on the DUT in the radar pulse ranges (1.2 to 1.4 GHz and 2.7 to 3.1 GHz) with the lower fed input power (up to 15 W) from the power amplifier in the developed NFIT setup. The proof of concept is validated with the successful near-field immunity debugging of an electric power steering (EPS) device used in the automotive industry with the developed NFIT setup. The radiated susceptibility debugging test results of developed NFIT method and conventional method of ISO 11452-2 test setup turned out to be close to each other for the tested DUT in immunity performance. The proposed procedure has advantages of industry usefulness with fast, handy, and cost-effective radiated immunity debugging of the DUT without the requirement of large antenna, high-power amplifiers, optical DUT connecting harness, and an anechoic chamber as needed in ISO 11452-2 standard setup for the debugging analysis.

Funder

MANDO Corp. Ltd

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. AutoMotive Electromagnetic Compatibility (EMC);Rybak,2004

2. EMC issues in cars with electric drives

3. Study of EMC Problems with Vehicles;Zhao,2013

4. Target filtering for military ATC primary radar

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3