Abstract
This paper introduces a robust dynamic sliding mode control algorithm using a nonlinear disturbance observer for system dynamics. The proposed method is applied to provide a rapid adaptation and strictly robust performance for the attitude and altitude control of unmanned aerial vehicles (UAVs). The procedure of the proposed method consists of two stages. First, a nonlinear disturbance observer is applied to estimate the exogenous perturbation. Second, a robust dynamic sliding mode controller integrated with the estimated values of disturbances is presented by a combination of a proportional–integral–derivative (PID) sliding surface and super twisting technique to compensate for the effect of these perturbations on the system. In addition, the stability of a control system is established by Lyapunov theory. A numerical simulation was performed and compared to recently alternative methods. An excellent tracking performance and superior stability of the attitude and altitude control of UAVs, exhibiting a fast response, good adaptation, and no chattering effect in the simulation results proved the robustness and effectiveness of the proposed method.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献