Performance Evaluation of Message Routing Strategies in the Internet of Robotic Things Using the D/M/c/K/FCFS Queuing Network

Author:

Feitosa Leonel,Gonçalves Glauber,Nguyen Tuan AnhORCID,Lee Jae WooORCID,Silva Francisco AirtonORCID

Abstract

The Internet of Robotic Things (IoRT) has emerged as a promising computing paradigm integrating the cloud/fog/edge computing continuum in the Internet of Things (IoT) to optimize the operations of intelligent robotic agents in factories. A single robot agent at the edge of the network can comprise hundreds of sensors and actuators; thus, the tasks performed by multiple agents can be computationally expensive, which are often possible by offloading the computing tasks to the distant computing resources in the cloud or fog computing layers. In this context, it is of paramount importance to assimilate the performance impact of different system components and parameters in an IoRT infrastructure to provide IoRT system designers with tools to assess the performance of their manufacturing projects at different stages of development. Therefore, we propose in this article a performance evaluation methodology based on the D/M/c/K/FCFS queuing network pattern and present a queuing-network-based performance model for the performance assessment of compatible IoRT systems associated with the edge, fog, and cloud computing paradigms. To find the factors that expose the highest impact on the system performance in practical scenarios, a sensitivity analysis using the Design of Experiments (DoE) was performed on the proposed performance model. On the outputs obtained by the DoE, comprehensive performance analyses were conducted to assimilate the impact of different routing strategies and the variation in the capacity of the system components. The analysis results indicated that the proposed model enables the evaluation of how different configurations of the components of the IoRT architecture impact the system performance through different performance metrics of interest including the (i) mean response time, (ii) utilization of components, (iii) number of messages, and (iv) drop rate. This study can help improve the operation and management of IoRT infrastructures associated with the cloud/fog/edge computing continuum in practice.

Funder

Konkuk University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. Towards efficient deployment in Internet of Robotic Things;Razafimandimby,2018

2. Internet of Robotic Things in Smart Domains: Applications and Challenges

3. Internet of Robotic Things: Concept, Technologies, and Challenges

4. Ubiquitous manufacturing system based on Cloud: A robotics application

5. Internet of robotic things with digital platforms: Digitization of robotics enterprise;Masuda,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3