Integrating Vehicle Positioning and Path Tracking Practices for an Autonomous Vehicle Prototype in Campus Environment

Author:

Yang Jui-An,Kuo Chung-Hsien

Abstract

This paper presents the implementation of an autonomous electric vehicle (EV) project in the National Taiwan University of Science and Technology (NTUST) campus in Taiwan. The aim of this work was to integrate two important practices of realizing an autonomous vehicle in a campus environment, including vehicle positioning and path tracking. Such a project is helpful to the students to learn and practice key technologies of autonomous vehicles conveniently. Therefore, a laboratory-made EV was equipped with real-time kinematic GPS (RTK-GPS) to provide centimeter position accuracy. Furthermore, the model predictive control (MPC) was proposed to perform the path tracking capability. Nevertheless, the RTK-GPS exhibited some robust positioning concerns in practical application, such as a low update rate, signal obstruction, signal drift, and network instability. To solve this problem, a multisensory fusion approach using an unscented Kalman filter (UKF) was utilized to improve the vehicle positioning performance by further considering an inertial measurement unit (IMU) and wheel odometry. On the other hand, the model predictive control (MPC) is usually used to control autonomous EVs. However, the determination of MPC parameters is a challenging task. Hence, reinforcement learning (RL) was utilized to generalize the pre-trained datum value for the determination of MPC parameters in practice. To evaluate the performance of the RL-based MPC, software simulations using MATLAB and a laboratory-made, full-scale electric vehicle were arranged for experiments and validation. In a 199.27 m campus loop path, the estimated travel distance error was 0.82% in terms of UKF. The MPC parameters generated by RL also achieved a better tracking performance with 0.227 m RMSE in path tracking experiments, and they also achieved a better tracking performance when compared to that of human-tuned MPC parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning;ISPRS Open Journal of Photogrammetry and Remote Sensing;2024-04

2. Optimal Pose Estimation with Particle Filters Using Unpowered Wheels;Lecture Notes in Networks and Systems;2024

3. Design and Experiments of Automatic Vehicle Platoon Management with Connected Autonomous Vehicles in Mixed Traffic;2023 China Automation Congress (CAC);2023-11-17

4. Development of a Four-Wheel Steering Scale Vehicle for Research and Education on Autonomous Vehicle Motion Control;IEEE Robotics and Automation Letters;2023-08

5. Performance of Low-cost GPS-RTK for Navigating AGV Outdoors;2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3