Abstract
A novel concept of four-beam antenna arrays operating in a one-octave frequency range that allows stable beam directions and beamwidths to be achieved is proposed. As shown, such radiation patterns can be obtained when radiating elements are appropriately spaced and fed by a broadband 4 × 4 Butler matrix with directional filters connected to its outputs. In this solution, broadband radiating elements are arranged in such a way that, for the lower and upper frequencies, two separate subarrays can be distinguished, each one consisting of identically arranged radiating elements. The subarrays are fed by a broadband Butler matrix at the output to which an appropriate feeding network based on directional filters is connected. These filters ensure smooth signal switching across the operational bandwidth between elements utilized at lower and higher frequency bands. Therefore, as shown, it is possible to control both beamwidths and beam directions of the resulting multi-beam antenna arrays. Moreover, two different concepts of the feeding network connected in between the Butler matrix and radiating elements for lowering the sidelobes are discussed. The theoretical analyses of the proposed antenna arrays are shown and confirmed by measurements of the developed two-antenna arrays consisting of eight and twelve radiating elements, operating in a 2–4 GHz frequency range.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献