Performance Enhancement of Photoconductive Antenna Using Saw-Toothed Plasmonic Contact Electrodes

Author:

Zhang Xingyun,Zhan Fangyuan,Wei Xianlong,He Wenlong,Ruan CunjunORCID

Abstract

A photoconductive logarithmic spiral antenna with saw-toothed plasmonic contact electrodes is proposed to provide a higher terahertz radiation compared with the conventional photoconductive antenna (PCA). The use of saw-toothed plasmonic contact electrodes creates a strong electric field between the anode and cathode, which generates a larger photocurrent and thereby effectively increases the terahertz radiation. The proposed PCA was fabricated and measured in response to an 80 fs optical pump from a fiber-based femtosecond laser with a wavelength of 780 nm. When the proposed antenna is loaded with an optical pump power of 20 mW and a bias voltage of 40 V, a broadband pulsed terahertz radiation in the frequency range of 0.1–2 THz was observed. Compared to the conventional PCA, the THz power measured by terahertz time domain spectroscopy (THz-TDS) increased by an average of 10.45 times.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Terahertz generation characteristics of Grating Photoconductive Antenna;2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC);2023-11-10

2. Two-Dimensional Materials for Terahertz Emission;Trends in Terahertz Technology;2023-09-27

3. An Investigation of the Effect of Embedded Gold Nanoparticles in Different Geometric Shapes on the Directivity of THz Photoconductive Antennas;Engineering, Technology & Applied Science Research;2023-08-09

4. Antennas for 5G and 6G Communications;5G and 6G Enhanced Broadband Communications [Working Title];2022-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3