Abstract
The introduction of low-power wide-area networks (LPWANs) has changed the image of smart systems, due to their wide coverage and low-power characteristics. This category of communication technologies is the perfect candidate to be integrated into smart inverter control architectures for remote microgrid (MG) applications. LoRaWAN is one of the leading LPWAN technologies, with some appealing features such as ease of implementation and the possibility of creating private networks. This study is devoted to analyze and evaluate the aforementioned integration. Initially, the characteristics of different LPWAN technologies are introduced, followed by an in-depth analysis of LoRa and LoRaWAN. Next, the role of communication in MGs with widespread elements is explained. A point-by-point LoRa architecture is proposed to be implemented in the grid-feeding control structure of smart inverters. This architecture is experimentally evaluated in terms of latency analysis and externally generated power setpoint, following smart inverters in different LoRa settings. The results demonstrate the effectiveness of the proposed LoRa architecture, while the settings are optimally configured. Finally, a hybrid communication system is proposed that can be effectively implemented for remote residential MG management.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献