Abstract
In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In a previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series was conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be brought closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献