Optimized Design of a Sonar Transmitter for the High-Power Control of Multichannel Acoustic Transducers

Author:

Lee Byung-Hwa,Baek Ji-EunORCID,Kim Dong-Wook,Lee Jeong-Min,Sim Jae-Yoon

Abstract

For driving multichannel underwater acoustic transducers, the integrated design of the transmitter based on the analysis of the widely distributed impedance should be considered. Previous studies focused on either the matching circuit or the fast resonant tracking control. This paper proposes the design and control methods of a sonar transmitter based on the analysis of the impedance distribution. For the transmitter design, the optimization method based on the particle swarm optimization (PSO) algorithm is proposed for estimating the equivalent and matching circuit parameters. The equivalent circuits of the transducer are more precisely designed by using the measured data in both air and water. The fitness function proposed in the matching includes special functions, such as the limitation and parasitic inductances. A comparison of the experimental and simulation results shows that the optimized matching design improved the power factor, and was similar to the experimental result. For the transmitter control, the constant power and voltage control (CPVC) and instant voltage and current control (IVCC) methods are proposed for the variable impedance load. The impedance variation range affects the rated power and rated voltage of the transmitter, and the rating range determines the initial modulation index (MI) of the pulse-width modulation (PWM) control. To verify the control method, an experimental setup including the multichannel acoustic transducers was established. As a result, the constant power and constant voltage were verified with the proposed control, and the instant voltage and current control also worked in the event that the instant voltage or current exceed their threshold values.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Underwater Sonar Power Amplifier Technologies;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

2. Cavitation Detection in a Tonpilz-Type Transducer for Active SONAR Transmission System;Journal of Marine Science and Engineering;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3